If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-40-3a=0
a = 1; b = -3; c = -40;
Δ = b2-4ac
Δ = -32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-13}{2*1}=\frac{-10}{2} =-5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+13}{2*1}=\frac{16}{2} =8 $
| .5(x+18)=4(2x-6)-9 | | 2=16v/10 | | .75q^2=108 | | 18=k/3+14 | | 22x-4=180 | | 3x-52=38 | | 0.5x+0.8+4(x+5)=3x | | 0.9x^2+5.4-4=0 | | 4n-8=112 | | -2t+4(3t+2)=3(3t-3)+22 | | 37w/6=9 | | 2.5z=23.5 | | -13y+17=-6y-11 | | (7f-32)+(2f+32)=90 | | a+17=37 | | w+6/9=4 | | x/6+4=-3 | | 3.56=p+2.2 | | 5(n+5)=60 | | j/2-3=7 | | w1.3=2.7 | | 18-3j=15 | | 12x=+6(x-2) | | 17-2w=13 | | 6(x-12)(3x-12)=720 | | p/3+13=17 | | 22=-2y+6(y-3) | | 2x+7(x-4)=-37 | | 38=27+x | | 26=-8u+6(u+6) | | 26=8u+6(u+6) | | -5x+3-3x=-4-33 |